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I. INTRODUCTION

Although rather simple, quantum lattice gas or spin mod-
els are known to give rise to complex strongly correlated
many-body physics. Currently the interest in these paradig-
matic models of condensed-matter physics is strongly ampli-
fied by the fact that it just becomes experimentally feasible
to “engineer” many of them with ultracold atoms in optical
lattice potentials.1,2 Quantum lattice models are composed of
small elementary subsystems �sites�, a spin or the occupation
of a single-particle state, arranged in a lattice. The geometry
of the lattice is reflected in the fact that only neighboring
subsystems are coupled to each other directly. In general the
Hamiltonian is of the form

Ĥ = �
i

ĥi + �
�ij�

v̂ij , �1�

where the on-site term ĥi acts on the local state space of
lattice site i only, while the coupling term v̂ij operates on
both sites i and j with the sum ��ij� running over all pairs of
neighboring sites �ij� �bonds�.

As the state-space dimensionality of the full system in-
creases exponentially with the number of sites M, generally
the treatment of models such as Eq. �1� is a hard problem.
However, sometimes there exist suitable approximation
schemes giving accurate results in certain regimes. One of
them is given by high-order series expansions, obtained by
automation of the usual Rayleigh-Schrödinger perturbation
calculus. Such expansions have proven to be a useful tool for
the investigation of zero-temperature properties.3,4 In the
simplest case, the coupling terms v̂ij are considered as per-
turbation. Starting from a product �g�=	i�ni�
��ni�� of local

eigenstates �ni� with ĥi�ni�=�i�ni�, physical quantities like ex-
pectation values or static susceptibilities �characterizing the
state evolving from �g� adiabatically when the perturbation is
switched on� can be expanded in high-order power series
with respect to a dimensionless coupling parameter. Also
quantum phase transitions,5 i.e., abrupt changes in the
ground-state structure, occurring when a certain parameter �
passes a critical value �c, can be inferred from such expan-
sions.

A widely and successfully used algorithm for the applica-
tion of perturbation calculus to such lattice models is given
by the connected cluster expansion:6,7 As a first step one has

to determine all subsets C �connected clusters� of mutually
connected bonds �ij� possessing not more than �max ele-
ments, with �max being the largest order of the expansion to
be considered. Moreover, all connected subclusters �and sub-
sub-clusters,…� of each of these connected clusters have to
be identified. The second step consists of applying the per-
turbation calculus iteratively to each of the small subsystems
ĤC=�i�C�ĥi+��ij��Cv̂ij corresponding to the connected clus-
ters C, with C� containing all sites connected to the bonds of
C. Finally, these results can be combined to give the desired
expansion.

However, when trying to apply the connected cluster for-
malism to the Bose-Hubbard model,8 describing bosonic par-
ticles with short-range interaction moving in a lattice of
single-particle orbitals �sites�, one encounters two difficul-
ties: �i� Finding all connected clusters as well as their sub-
clusters is a demanding task for three-dimensional lattice ge-
ometries �and even more for spatial dimensionalities d�3
that might be interesting in order to probe the convergence to
the mean-field limit�. �ii� The dimensionalities DC of the
connected cluster state spaces �that have to be considered
after the particle number conservation of the cluster Hamil-

tonians ĤC has already been taken into account� grow ex-
tremely fast with respect to the averaged lattice site occupa-
tion �filling� n. As a consequence, an iterative evaluation of
the perturbation series up to eighth �tenth� order is hindered
already for the moderate filling n=5 �n=3� by the fact that it
requires a representation of the cluster state spaces on the
machine.9 While difficulty �i� appears for every quantum lat-
tice model of large spatial dimensionality d�3, difficulty �ii�
is noticed for systems with the relevant local on-site state-
space dimensionalities being too large. In the following, a
method based on Kato’s formulation of Rayleigh-
Schrödinger perturbation calculus10 will be described that
circumvents both difficulties �i� and �ii�. Here, perturbative
corrections are obtained as sums over chains of processes
acting in the “classical” space containing the unperturbed
states but not their superpositions. These process chains, in
turn, are generated from paths through the d-dimensional lat-
tice. As an example, using this approach one is able to accu-
rately compute the Bose-Hubbard phase diagram at any in-
teger filling n and for spatial dimensionalities d=2, 3, and
larger.11 An implementation of the method presented here is
straightforward and can be accomplished from scratch with
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reasonable effort. The present approach is found to be related
to the ones described previously in Refs. 12–14 where con-
tributions to the perturbation series are equally expressed in
terms of sequences of processes. Differences to these ap-
proaches lie both in the way contributions are organized15

and in the generation of diagrams from paths through the
lattice.

For clarity, the process-chain method will be introduced in
terms of the simple Bose-Hubbard model.8 The generaliza-
tion of the method to more involved or just different lattice
Hamiltonians �such as those of Heisenberg-type spin models�
is, however, straightforward; later on the properties of a gen-
eral model amenable to the approach will be sketched. The
Bose-Hubbard Hamiltonian reads

ĤBH = �
i
U

2
n̂i�n̂i − 1� + ��i − ��n̂i� − J�

�ij�
�b̂i

†b̂j + b̂j
†b̂i� ,

�2�

with b̂i
†, b̂i, and n̂i
 b̂i

†b̂i denoting the bosonic creation, an-
nihilation, and number operator for a single-particle orbital
located at site i. The first line of Eq. �2� includes an on-site
interaction characterized by the energy cost U for each pair
of particles occupying the same site. Moreover, it assigns the
local potential energy �i−�
−�i to particles sitting at site i,
including an overall chemical potential � introduced to con-
trol the total particle number N. The terms of the second line
implement the kinetics, being exhausted by tunneling of par-
ticles between neighboring sites. Although rather simple, this
model provides a quantitative description of ultracold
bosonic alkali atoms in optical lattice potentials.1,16,2 It
shows quantum phase transitions between a gapless, com-
pressible superfluid phase with �quasi� long-range order
present at large values of the ratio J /U and various gapped
incompressible Mott-insulator phases �at sufficiently small
J /U� with exponentially decaying correlations, each charac-
terized by an integer filling factor n=�i�n̂i� /M �depending
on the chemical potential � /U�.5,8

This paper is organized as follows: Section II is devoted
to the general perturbation expansion. It is briefly reviewed
how expectation values and static susceptibilities can be ob-
tained via the computation of energy corrections. Starting
from Kato’s formulation of the �th energy correction,10 then
a way to reduce the number of terms that have to be taken
into account to a minimum is described. This is the first step
that has to be accomplished on the machine. Finally, the
perturbative corrections are written as sums over process
chains. This formulation will serve as a fruitful starting point
for customizing perturbation calculus to quantum lattice
models in the way developed in Sec. III. The main concep-
tual step of Sec. III consists in considering groups of opera-
tions �to be visualized by diagrams� such that each sequence
of the operations contained in a group/diagram gives a pro-
cess chain contributing to the desired perturbative correction.
It is explained that the generation of the relevant diagrams
can be put down to the rather simple task of generating paths
through the lattice �this allows one to address also large d�,
and it is described how the evaluation of diagrams can be
performed. These are the two final steps to be implemented

on the computer. In order to give a comprehensive presenta-
tion of the approach, the computation of perturbative correc-
tions is first discussed in the context of the Bose-Hubbard
model �2�. Following along the lines given by this instructive
example the application of the method to the large class of
quantum lattice models described at the end of Sec. III
should be straightforward. Section IV summarizes the basic
steps of the approach, before Sec. V closes with concluding
remarks.

II. GENERAL PERTURBATION EXPANSION

A. Problem

Consider a system described by the time-independent
Hamiltonian

Ĥ = Ĥ0 + �V̂ �3�

consisting of an unperturbed part Ĥ0 that is already diago-
nalized,

Ĥ0 = �
e

Ee�e��e� , �4�

and a perturbation

V̂ = �
e,e�

Ve�,e�e���e� �5�

multiplied by a dimensionless factor � finally to be set equal
to 1. The standard nondegenerate Rayleigh-Schrödinger per-
turbation calculus17 gives a power-law expansion

EG = Eg + �Eg
�1� + �2Eg

�2� + ¯ �6�

for the energy of the state �G� evolving adiabatically from an
eigenstate �g� of the unperturbed Hamiltonian �e.g., its
ground state� when the perturbation is switched on. In the
following the question of convergence will not be discussed,
but an algorithm for the computation of such series expan-
sions for many-body quantum lattice models is devised.

Usually, one is not interested in high-order perturbative
corrections to the state of a many-body system containing a
vast amount of mostly unwanted information. One rather
wishes to compute selected quantities such as expectation

values �G�Â�G�. It is known, however, that the computation
of ground-state expectation values and static susceptibilities
can be reduced to the evaluation of energy corrections. In-
troducing the extended Hamiltonian

ĤAB = Ĥ0 + �V̂ + xÂ + yB̂ , �7�

with operators Â and B̂, a perturbative treatment of V̂�


�V̂+xÂ+yB̂ yields the expansion

EGAB
= �

�,m,k
Eg

��,m,k���xmyk �8�

for the energy of the perturbed eigenstate �GAB� evolving

from �g�. �In the case of non-Hermitian operators Â one can

consider instead the Hermitian ones Â�+�
 1
2 �Â+ Â†� and
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Â�−�
 1
2i �Â− Â†� such that Â= Â�+�+ iÂ�−�.� The low-order co-

efficients with respect to x and y then give series in powers
of � for the expectation value

�G�Â�G� = �
�

��Eg
��,1,0�, �9�

and the static susceptibilities

�AB = �
�

��Eg
��,1,1� �10�

and

�AA =
1

2�
�

��Eg
��,2,0� �11�

describing the linear response of �Â�, when the full Hamil-

tonian Ĥ is perturbed by B̂ or Â, respectively. One can obtain
these relations, e.g., by using the Hellmann-Feynman theo-

rem d
dz �	�z��Ĥ�z��	�z��= �	�z��� d

dz Ĥ�z���	�z�� �valid if �	�z��
is a normalized eigenstate of Ĥ�z�� or by interpreting them as
first-order energy corrections to the unperturbed problem

given by the full Hamiltonian Ĥ. Hence, solely by using a
formalism for the evaluation of energy corrections, one can
obtain series expansions for many important quantities char-
acterizing the system.

B. Minimal expression for the �th order energy correction

The �th energy correction appearing in Eq. �6� is given by
Kato’s closed expression10 �see also Ref. 17�

Eg
��� = �

��−1�
tr�Ŝ��+1V̂Ŝ��

¯ V̂Ŝ�3V̂Ŝ�2V̂Ŝ�1� �12�

with the sum ���−1� running over all combinations of the
�+1 non-negative integers �k such that �k=1

�+1�k=�−1,
tr�·�
�e�e� · �e�, and

Ŝ� 
 �− �g��g� for � = 0

�
e�g

�e��e�
�Eg − Ee�� for � � 1.� �13�

Since on the right-hand side of Eq. �12� there are always at
least two �i equal to zero, by cyclic permutation under the
trace and using

Ŝ�Ŝ�� = �− Ŝ0 for � = 0 and �� = 0

0 for � = 0 and �� � 0

or � � 0 and �� = 0

Ŝ�+�� for � � 0 and �� � 0
� �14�

the energy correction can always be expressed as a sum over
expectation values with respect to the unperturbed state �g�.
This gives

Eg
��� = �

��−1�
G��k��g�V̂Ŝ��−1V̂ ¯ Ŝ�2V̂Ŝ�1V̂�g� �15�

with �k=1
�−1�k=�−1 according to the constraint of sum �12�

and with �not uniquely determined� weight factors G��k� tak-

ing into account how often each matrix element is generated
with positive and negative prefactor during the elimination
of the trace. Below the short hand

���, . . . ,�2,�1� 
 �g�V̂Ŝ��V̂ ¯ Ŝ�2V̂Ŝ�1V̂�g� , �16�

for the matrix elements appearing in sum �15� will be used,

with � �
�g�V̂�g� denoting the first-order energy correction.
An example for an expression such as Eq. �15� is given by

the formula18 �see also Ref. 17�

Eg
��� = �

��−1�

����−1, . . . ,�2,�1� , �17�

where all G��k� are either zero or one, as it is encoded in the
set of constraints �k=1

s �k�s with s=1,2 , . . . ��−2�, addi-
tional to the requirement �k=1

�−1�k��−1. A further way to
obtain an expression of type �15� similar to formula �17� is to
start with the matrix element �1,1 , . . . ,1 ,1�, with all �k=1,
and to generate successively further matrix elements to be
considered by applying the recursive scheme described in
Ref. 19.

Many matrix elements ���−1 , . . . ,�2 ,�1� that appear in the
sum �15� or sum �17� give identical contributions: writing

explicitly Ŝ0=−�g��g�, each matrix element ���−1 , . . . ,�2 ,�1�
breaks up into elementary matrix elements �EME�
�
� , . . . ,
2 ,
1�, containing strictly positive �i.e., nonzero� in-
tegers 
i only. Thus, e.g., one has

�1,1,0,0,3,0,2,1� = − �1,1�� ��3��2,1�

= − �1,1�� ��3��1,2� = �1,1,0,0,3,0,1,2�

= − �1,1�� ��2,1��3� = �1,1,0,0,2,1,0,3�

= − �1,1�� ��1,2��3� = �1,1,0,0,1,2,0,3�

= ¯ . �18�

Here two basic operations were applied leaving the expres-
sion unchanged, the permutation of EMEs and the “reflec-
tion” of an EME, �
� , . . . ,
2 ,
1�→ �
1 ,
2 , . . . ,
��. The lat-

ter is allowed since both V̂ and the Ŝ� are Hermitian. Hence,
one has families of matrix elements ���−1 , . . . ,�2 ,�1� with
all members giving the same contribution. In contrast, differ-
ent EMEs �
� , . . . ,
2 ,
1� generally give different contribu-
tions, if, by convention, one considers EMEs differing just
by a “reflection” to be identical. Accordingly, each family of
equally contributing matrix elements ���−1 , . . . ,�2 ,�1� is
uniquely determined by a set of EMEs. In order to take into
account only one representative of each family the energy
correction can be rewritten as

Eg
��� = �

��−1�
G��k�

min ���−1, . . . ,�2,�1� �19�

with a minimum number of nonvanishing weight factors
G��k�

min . Obtaining such a minimal expression for the orders to
be considered is the first problem that has to be solved on a
computer for an implementation of the method described
here. Since so far one is dealing with the general perturbation
expansion, this step has to be performed once only.
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A routine �R1� for the generation of a minimal set of
matrix elements contributing to sum �19� and their weights
can be based on one of two alternative approaches. The first
one is to generate all matrix elements appearing in an expres-
sion such as Eq. �15� by starting either from formula �12� or
Eq. �17�, and then to identify members of the same matrix
element family by decomposition into EMEs. The second
approach is to generate all EMEs and all combinations of
them describing families of matrix elements
���−1 , . . . ,�2 ,�1� appearing in sum �15�. The weight factor
G��k�

min of a given family can then be obtained from a simple
expression.20 The minimum number K� of matrix elements to
be considered in �th order is listed in Table I. It is drastically
reduced, if it is known that the first-order energy correction

�g�V̂�g�= � � vanishes. Generally, given knowledge about the
vanishing of corrections in certain orders � that are, say,
even, odd or smaller than a value �0 can be used to reduce
the number of matrix elements that has to be taken into ac-
count. For example, if all corrections appearing in orders
smaller than �0 are known to vanish, then there is at most
one relevant matrix element appearing in order �0.

C. Energy corrections as sums over process chains

One can interpret each matrix element ���−1 , . . . ,�2 ,�1�
appearing in Eq. �19� as a weighted sum ��ei�

over paths
�g�→ �e1�→ �e2�→¯→ �e�−1�→ �g� in a “classical” space
containing the unperturbed states �e� but not their superposi-
tions. All paths lead from �g� back to �g� via �−1 intermedi-
ate states �ek�: by plugging definitions �5� and �13� into Eq.
�16�, one obtains

���−1, . . . ,�2,�1� = �
�ek�

Vg,e�−1
We�−1

���−1�
¯

� ¯ We2

��2�Ve2,e1
We1

��1�Ve1,g �20�

with

We
��� 
 − ��,0�e,g + �1 − ��,0��1 − �e,g��Eg − Ee�−�. �21�

In that way a formulation involving huge quantum mechani-
cal state spaces is avoided.

However, usually we have to deal with several perturbing

terms at once, V̂= V̂�1�+ V̂�2�+¯ with V̂�m�=�e�,eVe�,e
�m� �e���e�,

and we wish to keep track of them independently. Therefore,
it is convenient to reformulate Eq. �20� once more, namely,
as a sum over process chains P each of them being given by
an ordered sequence Ve1,g

�m1��e1��g�, Ve2,e1

�m2� �e2��e1� , . . .,
Vg,e�−1

�m�� �g��e�−1� of basic processes Ve�,e
�m� �e���e� leading from �g�

back to �g� in the classical space of unperturbed states intro-
duced above. One has

���−1, . . . ,�2,�1� = �
P

Vg,e�−1

�m�� We�−1

���−1�
¯

� ¯ We2

��2�Ve2,e1

�m2� We1

��1�Ve1,g
�m1�, �22�

or, in combination with Eq. �19�,

Eg
��� = �

P
�
��k�

G��k�
min Vg,e�−1

�m��
¯ We2

��2�Ve2,e1

�m2� We1

��1�Ve1,g
�m1� �23�

for the �th order energy correction.
The strategy for the computation of energy corrections

proposed here is to generate all process chains P appearing
in a given order n in a first step, and then to compute the
contributions arising from each chain according to the differ-
ent sets ��k� possessing nonvanishing weight factors G��k�

min in
the general perturbation expansion in the form given by Eq.
�19�. In the next section it is shown how both steps can be
accomplished efficiently for a lattice system with short-range
coupling.

III. LATTICE SYSTEM

A. Bose-Hubbard problem

In this section, the above formalism is applied to the
Bose-Hubbard Hamiltonian �2� on a hypercubic lattice ge-
ometry. All terms that are diagonal with respect to the lattice-
site occupation numbers ni will be considered as unperturbed
problem

TABLE I. Minimum number K� of matrix elements that have to
be considered for the �th order energy correction. The number of
contributing terms is significantly reduced to K�� if the first-order

energy correction vanishes, �g�V̂�g�= � �=0. The data for ��12 are
taken from Ref. 20.

Order � K� �No. of terms� K�� �No. of restrict. terms�

1 1 0

2 1 1

3 2 1

4 4 2

5 10 3

6 22 7

7 53 12

8 119 26

9 278 47

10 627 97

11 1433 180

12 3216 357

13 7253 668

14 16169 1297

15 36062 2427

16 79876 4628

17 176668 8637

18 388910 16260

19 854493 30188

20 56252

21 103848

22 191873

23 352204

24 646061
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Ĥ0 = �
i
1

2
�n̂i − 1� −

�i

U
�n̂i, �24�

and the remaining tunneling terms as perturbation

V̂ = −
J

U
�
�ij�

�b̂i
†b̂j + b̂j

†b̂i� . �25�

Energies have been expressed in units of the positive inter-
action parameter U, such that J /U is identified to be the
dimensionless coupling parameter. A basis of unperturbed
states �e� is given by the lattice-site occupation-number states

��ni�� 
 	
i

�b̂i
†�ni

�ni!
�vacuum� . �26�

Let us assume that the state we want to investigate is the one
evolving adiabatically from the unperturbed state

�g� 
 ��ni = gi�� �27�

when the perturbation is switched on. If �g� denotes the un-
perturbed ground state its occupation numbers gi minimize
��gi−1� /2−�i /U�gi and read

gi = �0 if �i/U  0

h if �h − 1�  �i/U  h

�h − 1� or h if �i/U = h − 1 � 0,
� �28�

with non-negative integers h. As long as the marginal case of
integer �i /U is avoided, this state is protected by an energy
gap.

In the following first a thorough discussion of the compu-
tation of �actual� energy corrections is given as an instructive
example. Then it will be shown that this example already
contains everything one needs also for the computation of
other quantities of interest, such as single particle correla-

tions �b̂i
†b̂j�, number correlations �n̂in̂j�, or the static suscep-

tibility �â0,â0
† for the annihilation and creation operators of

the condensate mode, â0 and â0
†. The divergence of the latter

indicates the quantum phase transition from a Mott-insulator
to a superfluid.11,21,22 The approach can easily be generalized
to more complicated or just different lattice models. A gen-
eral model that is amenable to the procedure described below
is sketched at the end of this section.

B. Corrections to the energy

The perturbation V̂ to be considered consists of tunneling
processes, i.e., the annihilation of one particle at a given site
in combination with the creation of one particle at a neigh-
boring site. Denoting a tunneling operation by an arrow, one
can visualize sets of tunneling operations graphically by
drawing diagrams. Obviously all process chains P starting
and ending at the same �arbitrary� unperturbed state �g� must
contain the same number of creation and annihilation pro-
cesses at each site. Hence, those diagrams contributing to the
energy corrections contain closed paths only. In Fig. 1 typi-
cal diagrams describing sets of tunneling operations in the
two-dimensional square lattice are sketched. The number of

arrows corresponds to the power of J /U to which the dia-
gram contributes. In principle one can obtain all process
chains P appearing in the general formula �23� by generating
all diagrams �sets of tunneling operations� contributing to a
given order in a first step, and by ordering the operations of
each diagram in all possible ways in a second step. Hence,
before energy corrections can be evaluated all contributing
diagrams have to be generated.

It has been noted that only diagrams containing closed
paths of tunneling operations contribute, since only these
have the same number of creation and annihilation opera-
tions at each site. In correspondence with the connected clus-
ter theorem,7 one can also show that only connected dia-
grams give a nonvanishing contribution to the energy
correction, i.e., those diagrams that cannot be divided into
two or more subdiagrams with no lattice site in common or,
in other words, that can be interpreted to consist of a single
closed path only. For example, the energy corrections stem-
ming from the different process chains that can be obtained
from diagram �d� of Fig. 1 must add up to zero. The basic
idea for a proof of this statement goes as follows:7 A con-
nected diagram would equally appear in the perturbation ex-
pansion for a system differing from the one considered here
by the fact that it consists of two completely independent
subsystems that are not coupled to each other by tunneling
and with one part of the diagram lying in each of them. In
that case, however, the perturbed state evolving from an un-
perturbed product state will obviously be a product state with
respect to both decoupled subsystems, and its energy will be
the sum of both subsystem energies. Thus, contributions to
the energy depending in a nonadditive way on the properties
of both subsystems cannot occur.

Unless one is not dealing with a rather small system, com-
puting perturbative corrections to an extensive quantity like
the energy will generally involve too many diagrams to be
accomplished in reasonable time. Nevertheless, it is possible
to compute these corrections for a homogeneous system with

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Typical diagrams characterizing sets of tunneling opera-
tions between neighboring sites in the two-dimensional square lat-
tice that appear in the energy correction of second and fourth order.
Tunneling operations are denoted by arrows, lattice sites by circles.
Diagrams contributing to the perturbation expansion are those that
can be interpreted as a single closed path, i.e., all except �d�.
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�i=� �or a system that shows a different kind of transla-
tional symmetry�. In that case topologically identical
diagrams—such as �b� and �f� of Fig. 1—will give identical
contributions. In Fig. 2 all types of topologically different
diagrams appearing in the leading orders23 2, 4, and 6 are
plotted. The multiplicity MT of a topological diagram T is a
weight factor being defined as the number of ways it can be
embedded into the given lattice geometry. Note that discon-
nected diagrams would give rise to unphysical multiplicities
increasing with a power larger than one with the system size.
In the following diagrams like those of Fig. 1 containing
operations that are located in the lattice will be called geo-
graphical diagrams, while diagrams like those of Fig. 2 that
are characterized by topology only will be called topological
diagrams.

C. Computing high-order energy corrections

In order to obtain all topological diagrams contributing to
the energy correction and their multiplicities on a computer,
one needs two basic routines, R2a and R2b, that will also
serve to evaluate corrections to other expectation values than
that of the energy. The first routine �R2a� computes all paths
through the lattice via neighboring sites starting from a given
site i to another site j containing � steps. By choosing i= j
and associating each step with a tunneling operation, in that
way one obtains all sets of tunneling operations, i.e., all geo-
graphical diagrams, contributing in order �. However, two
corrections have to be taken into account. First, for closed
loops a path visiting s different lattice sites could equally be
associated to each of the s−1 sites different from i. Hence,
such a diagram must be weighted by a factor of s−1. Second,
it might happen that different paths contain exactly the same
tunneling operations �just in a different order�. An example
for that is given by the diagram shown in Fig. 1�b� that—
starting from the site all arrows are connected to—might be
obtained by first moving vertically and then horizontally or
vice versa. If two paths include the same tunneling opera-
tions, only one of them should be taken into account. For that
purpose a further routine �R2b� is needed that identifies paths
containing the same tunneling operations.

For a homogeneous Bravais lattice all sites are equal and
it suffices to consider just a single site i; moreover only
topologically distinct diagrams give distinct contributions.
The relevant topological diagrams and their multiplicities
can be obtained by collecting geographical ones of the same
topology. Note that this step serves only to reduce the num-
ber of diagrams that have to be evaluated. Hence, the algo-
rithm used to probe the topological equivalence of two geo-

graphical diagrams does not need to be perfect. A very
simple way of identifying identical topologies is to enumer-
ate the sites appearing in a geographical diagram by a single
index in the order they appear the first time in an associated
path. Then routine R2b can be used to compare the diagrams.
For the closed loop diagrams contributing to the ground state
energy, with site i not being distinguished from the other
ones appearing in the diagram, this approach has to be im-
proved by probing enumerations starting at different sites.

One advantage of the diagram generation via paths consist
in that fact that it is easily implemented, even for high spatial
dimensionalities d. Assuming, for example, a hypercubic lat-
tice, it is not difficult to design a routine R2a that in principle
works for arbitrary d and also practically allows to consider
values of d well above 3 that might be interesting to study
the convergence toward mean-field behavior.

Once all diagrams of a given order have been obtained,
their contribution to energy �23� can be evaluated by a last
routine �R3�. Each sequence of the operations contained in a
diagram corresponds to a different process chain P, with the
permutation of two identical operations—as they appear,
e.g., in Fig. 2�c�—not giving a new process chain. Thus, the
diagrams �a�, �b�, and �c� of Fig. 2 give rise to 2! =2, 4!
=24, and 4! / �2!�2=6 different process chains, respectively.
By applying the processes of a given chain one after the
other to a small array of occupation numbers �ni� initialized
with ni

�0�=gi, giving a sequence �ni
�0�� , �ni

�1�� , �ni
�2�� , . . ., one

can compute �i� the matrix elements Vek+1,ek

�mk� �being
−�J /U��ni

�k��nj
�k�+1��1/2 for tunneling from site i to site j�, �ii�

the unperturbed energy differences Eek
−Eg of the intermedi-

ate states �given by �i�ni
�k��ni

�k�−1�−gi�gi−1�− �� /U��ni
�k�

−gi���, and �iii� whether an intermediate state �ek� equals �g�
�i.e., whether ni

�k�=gi for all i� or not. Afterward one can
choose only those matrix elements ��n−1 , . . . ,�2 ,�1� appear-
ing in the minimal expression �19� that have �k=0 if �ek�
= �g� and �k�0 if �ek�� �g� for all intermediate states k
=1,2 , . . . ,n−1. Only these give a nonvanishing contribution
to energy correction �23� that now can be evaluated with the
help of Eq. �21� employing the energy differences Eek

−Eg.
The scheme described in the preceding paragraph is not

affected by the filling �the averaged particle number per site�,
since no representation of a quantum-mechanical state space
is needed. Moreover, while applying the process chain to a
set of occupation numbers those unperturbed basis states
��ni�� that are relevant for a given order of perturbation cal-
culus �and only those� are generated automatically.

D. Corrections to expectation values and static susceptibilities

Perturbative corrections to an expectation value �Â� �or a

static susceptibility �Â,B̂� in �th order of the perturbation V̂
can be obtained by computing energy corrections for the

combined perturbation V̂�=�V̂+xÂ+yB̂ in first order in x
�and y� and in �th order in �, as expressed in Eq. �9� �and Eq.
�10�� of Sec. II. Hence, in order to compute such quantities,
one can proceed exactly as before. Now just one process

Ae�,e�e���e� associated to the operator Â
�e,e�Ae�,e�e���e�
�and another one associated to B̂� has to be included in each

(c)(b)(a) (d) (e) (f) (g) (h) (i) (j)

FIG. 2. All topological diagrams contributing to the energy cor-
rection of a hypercubic lattice in the leading orders 2, 4, and 6.
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process chain, in addition to � tunneling processes stemming

from V̂. The weight factors G��k�
min entering the general pertur-

bation expansion �23� are those referring to energy correc-
tions of order �+1 for the computation of expectation values
�or �+2 for susceptibilities�.

For the computation of a correlation function �b̂i
†b̂j�, the

additional operation to be taken into account is the transfer
of a particle from site j to site i described by the operator

b̂i
†b̂j. Denoting such an operation by a dashed arrow, one can

again use diagrams to describe sets of operations. Typical
diagrams are shown in Fig. 3. As before, the requirement that
any sequence of the operations contained in a diagram must
lead from a given unperturbed state �g� back to it �i.e., that
the number of particle annihilations equals that of particle
creations at every site� ensures that only closed loops �con-
taining the dashed as well as solid arrows� contribute. Since,
moreover, again disconnected diagrams such as �c� do not
need to be considered, the tunneling operations stemming

from V̂ can be interpreted as a single path leading from i to j.
�One immediately sees that the perturbative treatment in the
tunneling term discussed here is not sensitive to single-
particle correlations between sites that are more than � steps
between neighboring sites apart.� Also the generation of dia-
grams via the generation of paths through the lattice can be
accomplished in a similar way as before by using routine
R2a. Paths lead now from i to j and must not be corrected by
the weight s−1, since no other starting point than the distin-
guished site i will be taken into account. Note that if i and j
are neighboring sites, as it is the case in diagram �d� of Fig.
3, the operation related to the dashed arrow still gives a
factor of x rather than �, such that it is well distinguished

from a parallel tunneling operation stemming form V̂ de-
scribed by a solid arrow. Therefore, e.g., in diagram �d� the
permutation of both upward tunneling operations �the “solid”
and the “dashed” one� in a sequence does lead to a new
process chain, such that here 4! /2! =12 different process
chains have to be taken into account.

Another example is the computation of number correla-
tions �n̂in̂j�. The corresponding operator n̂in̂j = b̂i

†b̂ib̂j
†b̂j, with

matrix elements depending on the occupation of both sites i
and j, leaves any unperturbed occupation number state unal-
tered. Nonetheless one can associate this “operation” with a
diagrammatic symbol that is chosen to be given by two dia-
monds at sites i and j, connected by a line. Figure 4 shows
some diagrams appearing in the perturbative expansion of
expectation values �n̂in̂j�. Obviously, the tunneling opera-
tions must form closed paths, such that the number of cre-
ation and annihilation operations at each site are equal.
Since, moreover, again only connected diagrams contribute,
the closed tunneling paths must visit either i or j. For given
i and j, one can generate all contributing diagrams by gen-
erating all combinations of two paths, such that one leads
from i back to i and the other from j back to j �including
paths of zero length�.

In the spirit of the examples treated so far, single-site
expectation values �n̂i

p� with arbitrary power p are obtained
from diagrams that are generated by paths leading from site i
back to site i.

It is worth mentioning that the expectation value of an
operator like n̂in̂j, acting on a few sites only, can be com-
puted even in the case of a large inhomogeneous system
�provided, of course, perturbation theory is meaningful�.
Since the contributing geographic diagrams are just those
exploring the neighborhood of i and j, their number is lim-
ited and does not depend on the system size. Correlations
between i and j that are induced by the perturbing coupling

term �such as �b̂i
†b̂j� in the present case� will, however, only

be taken into account in orders of perturbation theory that are
comparable to the distance between i and j �measured in
steps between neighboring sites�. This directly reflects the
limitation of the perturbative approach to systems with such
correlations decaying on a distance being at most equal to
the order of perturbation theory �at least as long as additional
extrapolation techniques are not applicable or considered�.

Finally, it shall be outlined how the static susceptibility
�â0,â0

† 
� for the annihilation and creation operators of the

(a)

i

j

(b)

i

j

(c)

i

j

(d)

j

i

FIG. 3. �Color online� Typical diagrams appearing in the pertur-

bation expansion of correlation functions �b̂i
†b̂j� in a 2D square

lattice. The dashed arrow is associated to an operator b̂i
†b̂j. Again,

all diagrams contain closed loops only, with the solid arrows de-
scribing a path from site i to site j, and disconnected diagrams like
�c� give zero contribution.

(a)

i

j
(b)

i

j

(c)

i

j (d)

i

j

FIG. 4. �Color online� Typical diagrams appearing in the pertur-
bation expansion of the number correlations �n̂in̂j� in a 2D square
lattice. The operation associated with the linked diamonds is de-

scribed by the operator b̂i
†b̂ib̂j

†b̂j that leaves occupation numbers
unaltered.
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condensate mode, â0 and â0
†, with â0��ib̂i for the homoge-

neous system can be computed. This quantity is proportional
to the contribution ����2 to the energy obtained from the

effective Hamiltonian Ĥeff= Ĥ+�i��b̂i+��b̂i
†�. The process

chains contributing to it contain �apart from tunneling pro-
cesses� one creation process and one annihilation process
that will be represented diagrammatically by a bullet • and a
cross �, respectively. Examples for relevant diagrams are
given in Fig. 5. They can be obtained from connected paths
starting and ending anywhere in the lattice �including the
zeroth order contribution shown in diagram �c��. All topo-
logical diagrams appearing in the leading orders 0, 1, 2, and
3 are shown in Fig. 6. In the limit of large spatial dimension-
alities d, tunneling several times along the same bond be-
comes very unlikely such that diagrams like �a�, �b�, �d�, and
�h� of Fig. 6 that can be interpreted as a path visiting each
site only once give the major contribution to the susceptibil-
ity.

For d�2 the susceptibility � diverges when J /U reaches
some critical value �J /U�c, indicating the quantum phase
transition from a Mott-insulator to a superfluid.21,22 How-
ever, the approximate value of � in �th order, ����


�k=0
� 
k�J /U�k with the coefficients 
k depending on � /U,

will always be finite for finite J /U as long as � /U is nonin-
teger. Thus, in order to extract the critical parameter �J /U�c
one has to resort to extrapolation to infinite order �. The
critical parameter can be associated with the radius of con-
vergence of the series for � with respect to J /U, namely
�J /U�c=limk→� 
k−1 /
k, assuming all 
k to have the same

sign. Plotting 
k−1 /
k versus 1 /k, one finds to good approxi-
mation all data points to lie on a straight line, suggesting the
very simple phenomenological extrapolation scheme to ex-
tend the line to 1 /k=0 by a linear fit.24 This procedure gives
the phase boundary �J /U�c versus � /U with an estimated
error of 1%–2% for arbitrary large filling n and spatial di-
mensionalities d=2, 3, and greater.11 The errors have been
estimated by monitoring deviations of the approximate phase
boundary while successively taking into account more and
more coefficients 
k. For n=1 these results agree with those
obtained by a strong coupling expansion25,26 �d=2� and by
quantum Monte Carlo simulations27,28 �d=2 and 3�. This
simple example illustrates that extrapolation can be a valu-
able tool augmenting high-order perturbation calculus. A
brief introduction to more advanced extrapolation techniques
as well as further references can be found in chapter 1 of
Ref. 4.

E. More general quantum lattice models

So far, in this section the method has been developed in
terms of the Bose-Hubbard model �2�. However, the ap-
proach is not restricted to this model, and following along
the lines of the above example, it can be applied to a variety
of quantum lattice models of the form given by Eq. �1�. This
includes fermionic Hubbard models or Heisenberg-type spin
models. In the remaining part of this section the properties of
quantum lattice models that are amenable to the method de-
scribed in this paper will be sketched.

First of all the splitting of the full Hamiltonian �1� into an

unperturbed part Ĥ0 and a perturbation V̂ does not necessar-

ily have to be such that Ĥ0 contains just all on-site terms ĥi,

while V̂ covers all coupling terms v̂ij. Both terms Ĥ0 and V̂

can contribute to both on-site terms ĥi and coupling terms v̂ij.
Moreover, the site index i can be generalized to run over
several degrees of freedom at every lattice point, or, simi-
larly, the sum ��ij� can be extended to include not only pairs
of nearest neighbors, but also further pairs of near sites. It is,

however, required that the relevant set of eigenstates of Ĥ0 is
characterized by a set of on-site quantum numbers �ni� taking
values ni=ni

min,ni
min+1,ni

min+2. . . ,ni
max �with the possibility

of arbitrary large on-site state-space dimensionalities Di

=ni
max−ni

min+1�. In other words, Ĥ0 should be expressed in
terms of number operators n̂i with n̂i�n1n2¯ni¯�
=ni�n1n2¯ni¯�. For each site i there should also be a pair

of ladder operators, �̂i
+ and �̂i

−, being defined by

�̂i
��n1n2¯ni¯�=�i

��n1n2¯ni�1¯�. The perturbation V̂
can be expressed in terms of both number and ladder opera-
tors. Given the structure described in this paragraph, it will
be possible to define diagrams and to evaluate them in a
similar fashion as described for the Bose-Hubbard model
above.

Lattice systems covered by the scheme just outlined are
bosonic or fermionic Hubbard models as well as spin Hamil-
tonians. In the former case the ni are just occupation numbers
running from ni

min=0 to ni
max=� for bosons and ni

max=1 for
fermions. The index i can also distinguish between different

(a) (b)

(c) (d)

FIG. 5. �Color online� Typical diagrams contributing to the
static susceptibility �â0,â0

† that indicates the quantum phase transi-
tion from a Mott-insulator to a superfluid.

(a) (b) (c) (d) (f)(e) (g) (h)

FIG. 6. �Color online� All topological diagrams contributing to
the static susceptibility �â0,â0

† in the leading orders 0, 1, 2, and 3.
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internal degrees of freedom �or species� of particles. For
spins, ni would be associated with the magnetic quantum
number characterizing the spin at site i along a distinguished
quantization axis, taking values between �S with half-
integer total spin S. Concerning just the implementation, the
systems �or the unperturbed states� amenable to the approach
described here do not need to be homogeneous and they can
be defined on various lattice geometries; also frustration, dis-
order, and certain types of long-range interaction can be
present. But, of course, apart from being implementable the
perturbation expansion must as well be a suitable approxi-
mation scheme for a given problem.

For particles �i.e., in the Hubbard case� the unperturbed

Hamiltonian Ĥ0 can contain site-dependent potential terms
�n̂i and two-particle density-density interaction terms �n̂in̂j,
also three- and more particle terms are possible. In spin mod-
els, corresponding terms can be considered, describing, e.g.,
local magnetic fields along the quantization axis or Ising-
type coupling. Nonlocal density-density interaction terms ap-

pearing in the unperturbed Hamiltonian Ĥ0 can, in fact, be
long-ranged. In that case the unperturbed energies computed
during the evaluation of a given diagram will depend on the
unperturbed quantum numbers ni at sites not contained in
that diagram �these will be unaltered by the operations con-
tained in the diagram�. Considering a homogeneous unper-
turbed state, this will cause only little extra computational
effort, for an inhomogeneous state the additional effort will
just grow as the number of sites within the range of interac-
tion. Clearly, the perturbative approach is limited to such
strongly correlated phases that can be explored by starting
from an unperturbed product state. However, the treatment of
the bosonic Mott-transition11,25 is an example showing that
even the boundaries of such phases in parameter space can
be obtained by applying suitable extrapolation schemes. One
should also note that �near� degeneracies between the unper-
turbed state considered and other unperturbed states can
spoil the results obtained by perturbation theory. As a simple
example, this can happen for varying on-site potentials �or
magnetic fields� that cause at some sites two different quan-
tum numbers to lead to similar unperturbed energies. As a
remedy, in these cases one might consider to include degen-

eracy breaking terms in Ĥ0 and to subtract them again in the

perturbation V̂, cf. chapter 8 of Ref. 4 and references therein.

The perturbation V̂ can contain the ladder operators �̂i
�.

For the Hubbard models these correspond to the bosonic or
fermionic creation and annihilation operators, for a spin
model they are given by the raising and lowering operators
for the given quantization axis at site i. For bosonic and spin
models the factors �i

� just depend on the local quantum
number ni. In the case of the fermionic Hubbard model, the
factors �i

� accompanying the creation or annihilation of par-
ticles take the values +1 and −1, depending on all occupation
numbers �ni� �according to a given convention for the order-
ing of all sites i�. Taking care of these signs will cause addi-

tional effort. While the unperturbed Hamiltonians Ĥ0 can
contain long-range coupling terms, the coupling between dif-

ferent sites i and j appearing in the perturbation V̂ should be
rather short-ranged, since the number of diagrams to be

evaluated grows rapidly with the number of coupling terms

contained in V̂. If the coupling between different sites i and j

is of the familiar form �̂i
+�̂ j

−, diagrams can, again, be gener-
ated conveniently by finding paths through the lattice as de-
scribed above for the Bose-Hubbard model. This form is,
however, quite typical, as it describes both hopping of par-
ticles as well as spin-spin coupling in spin directions trans-
verse to the quantization axis.

IV. SUMMARY

Let us briefly recapitulate the three basic steps of the ap-
proach described above in Secs. II and III. The first task to be
accomplished is to generate the leading order energy correc-
tions �19� as they appear in standard Rayleigh-Schrödinger
perturbation theory such that in every order � only a mini-
mum number of different matrix elements �16�, each charac-
terized by �−1 non-negative integers �k, has to be taken into
account. This can be done, e.g., by starting from Kato’s ex-
pression �12�, and merging matrix elements that �via a de-
composition into elementary matrix elements� are identified
to give identical contributions. The number of relevant terms
can further be reduced if a priori knowledge is available
about the vanishing of all matrix elements appearing in cer-
tain orders � with, e.g., � being even, odd, or smaller than
some value �0. The obtained results also serve for the com-
putation of expectation values and static susceptibilities.

The contributing matrix elements are interpreted as sums
over process chains in a classical state space containing only
the unperturbed states and not their superpositions, cf. Eq.
�22�. For the lattice problems considered, this formulation
allows one to organize the perturbation expansion in terms of
simple connected diagrams, each representing a collection of
different operations. The second and the final third step to be
accomplished are the generation and the evaluation of these
diagrams. It has been shown that the generation of diagrams
can be put down to the generation of paths through the lat-
tice, a rather simple task that can be done on a computer
even for large spatial dimensionalities d. Finally, the evalua-
tion of diagrams is straightforward; one has to go through all
possible sequences of the operations contained in a given
diagram and map them according to Eq. �22� to the terms of
the general perturbation expansion �19� obtained before.
Since this procedure does not require a representation of the
quantum-mechanical state space on the sublattice associated
to a given diagram, it is not affected by large dimensionali-
ties of the on-site state spaces.

V. CONCLUSION

A method to compute high-order series expansions for
ground-state properties of quantum lattice models has been
described that is based on Rayleigh-Schrödinger perturbation
calculus. The approach can be divided into three basic steps
that have to be accomplished on a computer; each of them
can be implemented with reasonable effort. Since the treat-
ment of high spatial dimensionalities as well as of large
lattice-site state-space dimensionalities is not connected to
serious difficulties, the presented approach complements the
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well-known connected cluster method.6,7 Recently, the
method described here has been used to compute the phase
diagram of the Bose-Hubbard model on a d-dimensional hy-
percubic lattice, describing ultracold bosonic atoms in opti-
cal lattices.11 It allowed not only to monitor in detail the
convergence toward both the quantum-rotor limit of high fill-
ing n and the mean-field limit of large d, but also provided
experimentally relevant data for two- and three-dimensional
systems at moderate filling n=2–10. However, as outlined in
Sec. III E a wide class of quantum lattice models including
Heisenberg-type spin and Hubbard-type tight-binding mod-
els are amenable to the approach described in this paper.
These models can be frustrated and inhomogeneous and they
can contain disorder as well as long-range interaction of the
density-density or Ising type. Especially in view of the enor-
mous interest in quantum lattice systems made of ultracold

atoms,1 the ease of treating three-dimensional systems can
make the method a valuable tool for current research.
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